Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro.
نویسندگان
چکیده
AIMS Myeloperoxidase (MPO), a cardiovascular risk factor in humans, is an in vivo catalyst for lipoprotein modification via intermediate formation of reactive chlorinating species. Among the different lipoprotein classes, anti-atherogenic high-density lipoprotein (HDL) represents a major target for modification by hypochlorous acid (HOCl), generated from H2O2 by MPO in the presence of physiological chloride concentrations. As MPO was identified as an HDL-associated protein that could facilitate selective oxidative modification of its physiological carrier, the aim of the present study was to investigate whether and to what extent modification of HDL by HOCl affects the binding affinity of MPO in vitro. METHODS AND RESULTS We show that binding affinity of 125I-labelled MPO to HDL markedly increases as a function of increasing extent of HOCl modification of HDL. In contrast to native HDL, HOCl-HDL potently inhibits MPO binding/uptake by endothelial cells and effectively attenuates metabolism of MPO by macrophages. Reduction of HDL-associated chloramines with methionine strongly impaired binding affinity of MPO towards HOCl-HDL. This indicates that N-chloramines generated by HOCl are regulators of the high-affinity interaction between HOCl-HDL and positively charged MPO. Most importantly, the presence of HOCl-HDL is almost without effect on the halogenating activity of MPO. CONCLUSION We propose that MPO-dependent modification of HDL and concomitant increase in the binding affinity for MPO could generate a vicious cycle of MPO transport to and MPO-dependent modification at sites of chronic inflammation.
منابع مشابه
2-chlorohexadecanal derived from hypochlorite-modified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis.
OBJECTIVE Myeloperoxidase, a heme enzyme that is present and active in human atherosclerotic lesions, provides a source for the generation of proinflammatory chlorinated reactants contributing to endothelial dysfunction. Modification of high-density lipoprotein (HDL) by hypochlorous acid/hypochlorite (HOCl/OCl-) [correction]-generated in vivo by the myeloperoxidase-hydrogen peroxide-chloride sy...
متن کاملMyeloperoxidase and hypochlorite, but not copper ions, oxidize heparin-bound LDL particles and release them from heparin.
A key factor in atherosclerosis is the retention of low density lipoprotein (LDL) in the extracellular matrix of the arterial intima, where it binds to the negatively charged glycosaminoglycan chains of proteoglycans. Oxidation may lead to modification of the lysine residues of apolipoprotein B-100 of LDL, which normally mediate the binding of LDL to glycosaminoglycans. Here, we studied whether...
متن کاملHypochlorite-modified low density lipoprotein inhibits nitric oxide synthesis in endothelial cells via an intracellular dislocalization of endothelial nitric-oxide synthase.
Hypochlorous acid/hypochlorite, generated by the myeloperoxidase/H(2)O(2)/halide system of activated phagocytes, has been shown to oxidize/modify low density lipoprotein (LDL) in vitro and may be involved in the formation of atherogenic lipoproteins in vivo. Accordingly, hypochlorite-modified (lipo)proteins have been detected in human atherosclerotic lesions where they colocalize with macrophag...
متن کاملAntioxidant Effects of Vitamins C and E on the Low-Density Lipoprotein Oxidation Mediated by Myeloperoxidase
Background: Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. Methods: MPO was isolated from f...
متن کاملHypochlorite-modified high-density lipoprotein promotes induction of HO-1 in endothelial cells via activation of p42/44 MAPK and zinc finger transcription factor Egr-1☆
Modification/chlorination of high-density lipoprotein (HDL) by hypochlorous acid (HOCl), formed by the myeloperoxidase-H₂O₂-chloride system of activated phagocytes, converts an anti-atherogenic lipoprotein into a pro-inflammatory lipoprotein particle. Chlorinated HDL is present in human lesion material, binds to and is internalized by endothelial cells and impairs expression and activity of end...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 79 1 شماره
صفحات -
تاریخ انتشار 2008